



## Pressure degassing systems

A degassing system consists of several components:

- Degassing unit
- Feedwater tank
- Instrumentation and control technology
- Steel structures, platforms and ladders



# Feedwater treatment with thermal degassing

**Degassing unit** The degassing unit (percolation degassing unit) is usually an upright, cylindrical vessel made of austenitic steel. An internal steam distribution system ensures direct contact of the heating steam with the medium to be degassed.

The feedwater, usually a mixture of condensate and supplementary water, is fed into the top section of the degassing unit via the respective connection nozzles. Even, fine distribution of the water over the entire width of the degassing unit occurs here via percolation with several percolation cups and, if necessary, other fittings. The water percolates downward in drops or fine jets, is caught by the percolation plates, redistributed and finally collected in the feedwater tank.

Steam flows against the water from all sides via the distribution system built into the degassing unit. The water heats to the boiling temperature very quickly as a result of the large surface created via percolation. The large surface benefits the outgassing of oxygen and free carbon dioxide. These gases are taken up and carried out by the steam flow and removed from the degassing unit at the exhaust vapour outlet in the top level of the degassing unit via the interior operating pressure. The fixtures are equipped with openings for guiding the steam.

The exhaust vapour quantity is limited at the exhaust vapour connection nozzle by a throttle mechanism (e.g. orifice, throttle valve).

The degassing unit is normally placed directly on the feedwater tank.





**Feedwater** The feedwater tank is manufactured as a horizontal, cylindrical vessel, usually made of unalloyed and normally annealed steel.

Its main task is the storage of feedwater for supplying the boiler system. It also fulfils a series of tasks that are of decisive importance for the entire treatment and economical operation. It serves:

- to cover demand peaks for the boiler water supply,
- to compensate for varying quantities of condensate,
- to bridge disruptions or interruptions to the water supply,
- as a reaction vessel for supplementary chemicals,
- for acceptance or connection of control units, measuring devices and safety devices,
- Secondary deaeration for residual degassing.

The level of the feedwater tank must be such that a supply pressure to the boiler feed pumps is obtained that is sufficiently high for when the feedwater is boiling, thereby ensuring continuous cavitation-free operation. It is secured on bearing blocks or a suitable support structure.

Feedwater degassing must be protected against overpressure, underpressure and overfilling, and is also equipped with level, temperature and pressure indicators.

Constant boiling-up of the vessel contents achieves subsequent degassing in the feedwater tank. This further improves the water quality. The heating steam supply is need-based and occurs via a control unit.

Control of If the heating steam has a higher pressure than the operating pressure, a steam pressure regulator must be installed in the steam supply line to the degassing unit. Control of the pressure regulator valve is normally pressure-dependent.

The required heating steam quantity depends on the quantities of additional water and condensate fed in and their temperature level. Regulation of the steam supply occurs automatically.

The degassing system must be set to an operating pressure exceeding the boiling point of the water at atmospheric pressure. This operating pressure (e.g. 0.2 bar overpressure) serves as the impulse for controlling the quantity of steam to be supplied.

To keep the water reserve in the feedwater tank as constant as possible, automatic supply control of the supplementary water occurs depending on the water level in the tank. The control unit is often connected directly to the feedwater tank.

To prevent sudden loads on the system and the supply network for water, steam, hot water and electricity, supply control must occur as smoothly as possible.

The level sensors, (floats, electrodes, floating switches and such like) must be set so that enough space remains between the set water level and the overflow of the tank so that condensate return peaks can be caught.

The resulting condensate (free of oil, hardness and other impurities) is fed back to the feedwater tank or degassing unit as evenly as possible.





**Safety devices** The feedwater tank must be protected against overfilling and overpressure. A safety valve is used to prevent overpressure, and overflow regulation is used for overfilling.

Units carrying a possible risk of vacuum build-up due to the method of operation and construction must be protected by at least one vacuum breaker.

This is usually a check valve that is closed due to overpressure in the degassing unit or feedwater tank and opened upon the presence of a vacuum from the external overpressure. The vacuum is broken via the aeration of the tanks that results. The apparatus can also be made fully vacuum-tight to prevent denting.

**Operation** In normal operation, clearly visible steam vapours can be seen to exit the exhaust vapour output of the degassing unit.

The exhaust vapour quantity (depending on the nominal load) is measured via the vapour throttle at the evaporation connection nozzle of the degassing unit in such a way that freed oxygen and carbon dioxide can be lead away to the outside air. Proper degassing is only ensured when the exhaust vapours can be released unhampered.

The degassing unit temperature and pressure must be monitored continuously.

CompleteRWT GmbH dimension, manufacture and supply complete units for the treatment of<br/>boiler feedwater.units – Design,<br/>manufacture<br/>and installa-<br/>tionIn addition to the main components, RWT GmbH also supplies all the fittings, regulators,<br/>safety equipment, dosing systems, sample coolers and examination cabinets, boiler water

safety equipment, dosing systems, sample coolers and examination cabinets, boiler water flash traps and condensate vessels required for operation and the necessary steel support structures, with platforms and ladders that comply with the relevant accident prevention regulations.

Only high-quality products from renowned manufacturers are used.





## Performance units/standard units

Standard thermal degassing systems are complete performance units with components that are optimally matched to each other, each designed for the operating conditions described below.

The systems are dimensioned so that an operating period of 20 to 30 minutes remains without supplementary water inlet when the feedwater tank is full.

#### **Standard sizes**



Data

|      | Degassing unit                    |                                            |        | Feedwater tank                    |                              |                             |  |  |  |
|------|-----------------------------------|--------------------------------------------|--------|-----------------------------------|------------------------------|-----------------------------|--|--|--|
| Туре | Diameter<br>Ø D <sub>E</sub> [mm] | <b>Output range</b><br>[m <sup>3</sup> /h] | Туре   | Diameter<br>Ø D <sub>s</sub> [mm] | Cylindrical length<br>L [mm] | Volume<br>[m <sup>3</sup> ] |  |  |  |
| TE1  | 300                               | 2.1                                        | SWB1   | 800                               | 2000                         | 1.1 *                       |  |  |  |
| TE1  | 300                               | 2.1                                        | SWB2   | 1000                              | 2000                         | 1.8                         |  |  |  |
| TE2  | 400                               | 3.8                                        | SWB3   | 1000                              | 2500                         | 2.2 *                       |  |  |  |
| TE2  | 400                               | 3.8                                        | SWB4   | 1250                              | 2500                         | 3.5                         |  |  |  |
| TE3  | 500                               | 6.0                                        | SWB5   | 1400                              | 2500                         | 4.4                         |  |  |  |
| TE3  | 500                               | 6.0                                        | SWB6   | 1250                              | 4000                         | 5.3                         |  |  |  |
| TE4  | 600                               | 10.0                                       | SWB7   | 1400                              | 4000                         | 6.7                         |  |  |  |
| TE4  | 600                               | 10.0                                       | SWB8a  | 1600                              | 4000                         | 8.8                         |  |  |  |
| TE5  | 700                               | 11.0                                       | SWB8b  | 1600                              | 4000                         | 8.8                         |  |  |  |
| TE6  | 800                               | 13.0                                       | SWB8c  | 1600                              | 4000                         | 8.8                         |  |  |  |
| TE6  | 800                               | 13.0                                       | SWB9   | 1600                              | 5000                         | 10.8                        |  |  |  |
| TE7  | 900                               | 17.0                                       | SWB10  | 1600                              | 6000                         | 12.8                        |  |  |  |
| TE8  | 1000                              | 20.0                                       | SWB11  | 1900                              | 5000                         | 15.5                        |  |  |  |
| TE8  | 1000                              | 20.0                                       | SWB12  | 1900                              | 6000                         | 18.2                        |  |  |  |
| TE9  | 1100                              | 29.0                                       | SWB13  | 1900                              | 7000                         | 21.0                        |  |  |  |
| TE10 | 1200                              | 35.0                                       | SWB14  | 2200                              | 6000                         | 25.0                        |  |  |  |
| TE10 | 1200                              | 35.0                                       | SWB15  | 2500                              | 6000                         | 32.0                        |  |  |  |
| TE11 | 1400                              | 50.0                                       | SWB16a | 2500                              | 8000                         | 42.0                        |  |  |  |
| TE12 | 1600                              | 60.0                                       | SWB16b | 2500                              | 8000                         | 42.0                        |  |  |  |
| TE13 | 1800                              | 100.0                                      | SWB17  | 2500                              | 10000                        | 52.0 *                      |  |  |  |
| TE13 | 1800                              | 100.0                                      | SWB18  | 3000                              | 8000                         | 62.0 *                      |  |  |  |
| TE14 | 2000                              | 150.0                                      | SWB19  | 3000                              | 10000                        | 75.0 *                      |  |  |  |
| TE14 | 2000                              | 150.0                                      | SWB20  | 3000                              | 12000                        | 89.0 *                      |  |  |  |

\* 20 min without supplementary water inlet

See next page for notes on configuration!





| Operating                  | The standard systems are design                                      | ed for the following conditions:                                                           |
|----------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| conditions                 | • Feedwater:                                                         | Approx. 105 °C and 0.2 bar overpressure                                                    |
|                            | Heating steam:                                                       | Saturated steam with 180 °C and 9 bar overpressure                                         |
|                            | Desalination rate:                                                   | 3 %                                                                                        |
|                            | • Exhaust vapour quantity:                                           | 0.3% of the rated output                                                                   |
|                            | Condensate quantity:                                                 | 50% of the rated output at 70 °C                                                           |
|                            | Supplementary water:                                                 | 15 °C (43 % share of the mass balance)                                                     |
|                            | • Max. operating overpressure:                                       | 0.5 bar                                                                                    |
|                            | • Max. operating temperature:                                        | 110 °C                                                                                     |
|                            | Different operating conditions re                                    | equire individual dimensioning (please enquire).                                           |
|                            | Connection nozzle and fitting                                        | dimensions                                                                                 |
| Heating steam              | The heating steam (specific volu                                     | me 1.43 m <sup>3</sup> /kg) flows at 40 m/s into the feedwater tank.                       |
| Relief valve               | Protection against overpressure i                                    | s provided by a safety valve(s).                                                           |
|                            | The safety valves are designed so reserve of                         | o that, with the given energy and mass balances, a safety                                  |
|                            | at least 40 % is guaranteed in th                                    | ne smaller systems and                                                                     |
|                            | at least 30 % of the heating stea                                    | am requirement is guaranteed in the larger systems.                                        |
|                            | The response pressure of the reli                                    | ef valve is 0.5 bar (overpressure).                                                        |
| Negative<br>pressure valve | The feedwater tanks are protect breakers.                            | ed against impermissible negative pressures by vacuum                                      |
| Connections                | The nominal widths of the connection water pumps are dimensioned for | ections for overflow valves and suction lines to the feed-<br>or a flow rate of < 1 m/s.   |
| Manholes                   | Small tanks are manufactured w                                       | ith an oval 350 x 450 mm manhole.                                                          |
|                            | Larger tanks are manufactured t<br>swivel arm for the cover (see AD  | o factory standard with a round manhole without a 2000 data sheet 5 and appendices 1 + 2). |
| Boiler cradles             | Boiler cradles are realised in acco<br>Whereby:                      | ordance with DIN 28080.                                                                    |
|                            | • Form BV for diameter $D_c = 80$                                    | 00 to 1900 mm                                                                              |
|                            | • Form D for diameter $D_s = 22$                                     | 200 to 3300 mm                                                                             |
| Materials                  | S 235 JR+N, P 265 GH, stainless                                      | steel 321, stainless steel 316Ti or as selected                                            |
| Approvals                  | Leak test with factory certification pressure equipment directive.   | on, manufactured pursuant to AD specifications and                                         |
|                            | A configuration in accordance w                                      | vith DIN EN 13445 is also possible.                                                        |





## **Components - degassing unit**

The high-quality standard degassing units are manufactured using the inert gas welding process.

- **Design** The degassing units consist of:
  - upper torispherical head
  - also a lower torispherical head, depending on the size
  - lower connecting flange
  - special percolation fittings
  - depending on the steam distribution configuration
  - Connections for condensate, supplementary water, exhaust vapours, if applicable pulse (3/8"), Pressure gauge or pressure transducer (1/2")
  - Connecting flanges:

Type 1(TE1 to TE 6) Type 2 (TE 7 and TE 8)

= Dome diameter DN 500

Type 2 (TE 9 to TE 12) DN 600

| Degassing unit, |        |  |  |  |  |
|-----------------|--------|--|--|--|--|
|                 | Туре 1 |  |  |  |  |
| I               |        |  |  |  |  |
|                 |        |  |  |  |  |

| Туре                      |                   | TE1       | TE2       | TE3       | TE4        | TE5        | TE6        |
|---------------------------|-------------------|-----------|-----------|-----------|------------|------------|------------|
| Output                    | [m³/h]            | 0.7 - 2.1 | 1.2 - 3.8 | 2.0 - 6.0 | 2.8 - 10.0 | 3.9 - 11.0 | 5.0 - 13.0 |
| Diameter Ø D <sub>E</sub> | [mm]              | 323       | 400       | 500       | 600        | 700        | 800        |
| Shell height H            | [mm]              | 750       | 750       | 1000      | 1000       | 1250       | 1500       |
| Total height              | [mm]              | 995       | 1010      | 1280      | 1300       | 1570       | 1840       |
| Empty weight              | [kg]              | 85        | 120       | 175       | 225        | 290        | 480        |
| Vessel connection         | [DN]              | 300       | 400       | 500       | 600        | 700        | 800        |
| Supplem.water/Conden      | nsate[DN]         | 20        | 25        | 32        | 40         | 40         | 50         |
| Exhaust vapours           | [DN]              | 15        | 15        | 20        | 25         | 25         | 32         |
| Exhaust surface           | [m <sup>2</sup> ] | 0.87      | 1.10      | 1.82      | 2.24       | 3.24       | 4.41       |

### Degassing unit,



| Туре                         |                   | TE7        | TE8        | TE9        | TE10        | TE11        | TE12        |
|------------------------------|-------------------|------------|------------|------------|-------------|-------------|-------------|
| Output                       | [m³/h]            | 6.5 - 17.0 | 7.8 - 20.0 | 9.2 - 29.0 | 11.0 - 35.0 | 15.4 - 50.0 | 20.0 - 60.0 |
| Diameter Ø D <sub>e</sub>    | [mm]              | 900        | 1000       | 1100       | 1200        | 1400        | 1600        |
| Shell height H               | [mm]              | 1750       | 2000       | 2000       | 2000        | 2000        | 2250        |
| Total height                 | [mm]              | 2470       | 2765       | 2800       | 2840        | 2920        | 3270        |
| Empty weight                 | [kg]              | 530        | 650        | 750        | 850         | 1200        | 1800        |
| Vessel connection            | [DN]              | 500        | 500        | 600        | 600         | 600         | 600         |
| Supplem.water/Condensate[DN] |                   | 50         | 65         | 65         | 80          | 100         | 100         |
| Exhaust vapours              | [DN]              | 32         | 32         | 40         | 50          | 65          | 65          |
| Exhaust surface              | [m <sup>2</sup> ] | 6.8        | 8.5        | 9.6        | 10.7        | 13.0        | 16.8        |

| Туре                      |                   | TE13         | TE14         |
|---------------------------|-------------------|--------------|--------------|
| Output                    | [m³/h]            | 25.0 - 100.0 | 31.4 - 150.0 |
| Diameter Ø D <sub>E</sub> | [mm]              | 1800         | 2000         |
| Shell height H            | [mm]              | 2500         | 2500         |
| Total height              | [mm]              | 3600         | 3680         |
| Empty weight              | [kg]              | 2200         | 2600         |
| Vessel connection         | [DN]              | 600          | 600          |
| Supplem.water/Conde       | 125               | 150          |              |
| Exhaust vapours           | [DN]              | 80           | 100          |
| Exhaust surface           | [m <sup>2</sup> ] | 20.9         | 24.0         |





| Operating and design data | Operating pressure<br>operating temperature                                                                                                                                                                                                          |                                                                                                                                                           | 0.2 bar (overpressure)<br>105 °C                                                                                                                                                                                      |  |  |  |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                           | permissible working<br>permissible operatin                                                                                                                                                                                                          | overpressure<br>g temperature                                                                                                                             | 0.5 bar (overpressure)<br>110 °C                                                                                                                                                                                      |  |  |  |
| Corrosion<br>protection   | Tanks and fittings:<br>Steel parts:                                                                                                                                                                                                                  | pickled and pas<br>primed                                                                                                                                 | sivated                                                                                                                                                                                                               |  |  |  |
| Materials                 | Jacket, head, stainless steel 321 insert<br>Tank surface made of S 235 JR+N plated                                                                                                                                                                   |                                                                                                                                                           |                                                                                                                                                                                                                       |  |  |  |
| Accessories<br>(optional) | <ul> <li>Stainless steel che</li> <li>Stainless steel exh</li> <li>Manometer or prewith pressure gau</li> <li>Stainless steel sup</li> <li>Exhaust vapours of Advantages: <ul> <li>Most of the exh</li> <li>Condensing of the</li> </ul> </li> </ul> | ck valves and sh<br>aust vapour baft<br>essure transduce<br>ge tap pursuant<br>plementary wate<br>condenser as tub<br>aust vapour heat<br>he exhaust vapo | utoff valves for supplementary water and condensate<br>fle and exhaust vapour valve<br>r,<br>to DIN and siphon<br>er regulator valve<br>e bundle heat exchanger<br>t reclaimed (low heating steam requirement)<br>urs |  |  |  |
| Approvals                 | Leak test with facto<br>manufactured pursu<br>optionally:<br>- Designed pursua<br>- Acceptance cert<br>- Non-destructive                                                                                                                             | ry certification,<br>ant to AD specif<br>ant to DIN EN 13<br>ificate<br>test                                                                              | fications and pressure equipment directive,<br>445                                                                                                                                                                    |  |  |  |

Special versions or non-standard versions possible on request.





## **Components - feedwater tanks**

The high-quality horizontal standard feedwater tanks (max. 0.5 bar (overpressure), 100 °C) are manufactured using the inert gas welding process.

- **Structure** The feedwater tanks consist of:
  - torispherical heads / tank bottoms convex on both sides
  - cylindrical jacket with flange at top for degassing unit
  - 2 boiler cradles at the bottom
  - internal steam distribution system via a perforated distributor pipe at the bottom optional: via a distributor pipe at the top with lances
  - Connections for steam infeed, safety valve, vacuum breaker, overflow, draining, outlet, feed water pump return, reserve, manhole, water level measurement, collars for dosing and thermometer (1/2")



| Data | Тур                       |                   | SWB1 | SWB2 | SWB3 | SWB4 | SWB5 | SWB6 |
|------|---------------------------|-------------------|------|------|------|------|------|------|
|      | Gross volume              | [m³]              | 1.10 | 1.77 | 2.16 | 3.46 | 4.41 | 5.27 |
|      | Net volumen               | [m³]              | 0.83 | 1.33 | 1.62 | 2.60 | 3.31 | 3.95 |
|      | Diameter Ø D <sub>s</sub> | [mm]              | 800  | 1000 | 1000 | 1250 | 1400 | 1250 |
|      | Shell length L            | [mm]              | 2000 | 2000 | 2500 | 2500 | 2500 | 4000 |
|      | Total length              | [mm]              | 2380 | 2460 | 2960 | 3050 | 3110 | 4530 |
|      | Empy weight               | [kg]              | 390  | 480  | 555  | 710  | 975  | 870  |
|      | Operating weight          | [t]               | 1.2  | 1.8  | 2.2  | 3.3  | 4.3  | 4.8  |
|      | Degassing unit connectio  | n[DN]             | 300  | 300  | 400  | 400  | 500  | 500  |
|      | Steam entry               | [DN]              | 50   | 50   | 65   | 65   | 80   | 80   |
|      | Safety valve              | [DN]              | 40   | 40   | 50   | 50   | 65   | 65   |
|      | Vacuum breaker            | [DN]              | 40   | 40   | 50   | 50   | 65   | 65   |
|      | Overflow                  | [DN]              | 32   | 32   | 40   | 40   | 50   | 50   |
|      | Draining                  | [DN]              | 25   | 25   | 25   | 25   | 32   | 32   |
|      | Outlet                    | [DN]              | 32   | 32   | 40   | 40   | 50   | 50   |
|      | Feedwater pump return     | <b>ı</b> [DN]     | 25   | 25   | 25   | 25   | 25   | 25   |
|      | Exterior surface          | [m <sup>2</sup> ] | 6.3  | 8.3  | 9.8  | 12.9 | 18.8 | 14.9 |



| Тур                       |                               | SWB7 | SWB8a | SWB8b | SWB8c | SWB9 | SWB10 |
|---------------------------|-------------------------------|------|-------|-------|-------|------|-------|
| Gross volume              | [m³]                          | 6.68 | 8.82  | 8.82  | 8.82  | 10.8 | 12.8  |
| Net volumen               | [m³]                          | 5.01 | 6.62  | 6.62  | 6.62  | 8.10 | 9.59  |
| Diameter Ø D <sub>s</sub> | [mm]                          | 1400 | 1600  | 1600  | 1600  | 1600 | 1600  |
| Shell length L            | [mm]                          | 4000 | 4000  | 4000  | 4000  | 5000 | 6000  |
| Total length              | [mm]                          | 4610 | 4800  | 4800  | 4800  | 5800 | 6800  |
| Empy weight               | [kg]                          | 1170 | 1605  | 1620  | 1655  | 1915 | 2160  |
| <b>Operating weight</b>   | [t]                           | 6.2  | 8.2   | 8.2   | 8.3   | 10.0 | 11.8  |
| Degassing unit conne      | Degassing unit connection[DN] |      | 600   | 700   | 800   | 800  | 500   |
| Steam entry               | [DN]                          | 100  | 100   | 100   | 125   | 125  | 150   |
| Safety valve              | [DN]                          | 80   | 80    | 80    | 100   | 100  | 100   |
| Vacuum breaker            | [DN]                          | 100  | 100   | 125   | 125   | 125  | 150   |
| Overflow                  | [DN]                          | 65   | 65    | 65    | 65    | 65   | 80    |
| Draining                  | [DN]                          | 32   | 40    | 40    | 40    | 40   | 40    |
| Outlet                    | [DN]                          | 65   | 65    | 65    | 65    | 65   | 80    |
| Feedwater pump ret        | turn [DN]                     | 32   | 32    | 32    | 32    | 32   | 32    |
| Exterior surface          | [m <sup>2</sup> ]             | 21.5 | 25.2  | 25.2  | 25.2  | 30.2 | 35.2  |

| Тур                       |                   | SWB11 | SWB12 | SWB13 | SWB14 | SWB15 | SWB16a  |
|---------------------------|-------------------|-------|-------|-------|-------|-------|---------|
| Gross volume              | [m³]              | 15.5  | 18.2  | 21.1  | 24.8  | 32.4  | 42.0    |
| Net volumen               | [m³]              | 11.6  | 13.7  | 15.8  | 18.6  | 24.3  | 31.5    |
| Diameter Ø D <sub>s</sub> | [mm]              | 1900  | 1900  | 1900  | 2200  | 2500  | 2500    |
| Shell length L            | [mm]              | 5000  | 6000  | 7000  | 6000  | 6000  | 8000    |
| Total length              | [mm]              | 5820  | 6820  | 7820  | 6950  | 7070  | 9070    |
| Empy weight               | [kg]              | 2890  | 3300  | 3815  | 4245  | 5965  | 7505    |
| <b>Operating weight</b>   | [t]               | 14.5  | 17.0  | 19.6  | 22.8  | 30.3  | 39.0    |
| Degassing unit conne      | ction[DN]         | 500   | 500   | 600   | 600   | 600   | 600     |
| Steam entry               | [DN]              | 150   | 150   | 200   | 200   | 200   | 250     |
| Safety valve              | [DN]              | 100   | 100   | 150   | 150   | 150   | 2 x 125 |
| Vacuum breaker            | [DN]              | 150   | 150   | 200   | 200   | 200   | 150     |
| Overflow                  | [DN]              | 100   | 100   | 100   | 125   | 125   | 150     |
| Draining                  | [DN]              | 50    | 50    | 65    | 65    | 80    | 80      |
| Outlet                    | [DN]              | 100   | 100   | 100   | 125   | 125   | 150     |
| Feedwater pump re         | turn [DN]         | 40    | 40    | 40    | 40    | 40    | 50      |
| Exterior surface          | [m <sup>2</sup> ] | 37.0  | 43.0  | 48.9  | 51.1  | 59.5  | 75.2    |

| Тур                       |                   | SWB16b  | SWB17   | SWB18   | SWB19   | SWB20   |
|---------------------------|-------------------|---------|---------|---------|---------|---------|
| Gross volume              | [m³]              | 42.0    | 51.7    | 61.6    | 75.5    | 89.4    |
| Net volumen               | [m³]              | 31.5    | 38.8    | 46.2    | 56.6    | 67.0    |
| Diameter Ø D <sub>s</sub> | [mm]              | 2500    | 2500    | 3000    | 3000    | 3000    |
| Shell length L            | [mm]              | 8000    | 10000   | 8000    | 10000   | 12000   |
| Total length              | [mm]              | 9070    | 11070   | 9280    | 11280   | 13280   |
| Empy weight               | [kg]              | 7515    | 9180    | 10775   | 13610   | 15525   |
| Operating weight          | [t]               | 39.0    | 48.0    | 57.0    | 70.2    | 82.5    |
| Degassing unit connect    | ion[DN]           | 600     | 600     | 600     | 600     | 600     |
| Steam entry               | [DN]              | 250     | 350     | 350     | 450     | 450     |
| Safety valve              | [DN]              | 2 x 150 | 3 x 150 | 3 x 150 | 4 x 150 | 4 x 150 |
| Vacuum breaker            | [DN]              | 200     | 200     | 200     | 250     | 250     |
| Overflow                  | [DN]              | 150     | 200     | 200     | 250     | 250     |
| Draining                  | [DN]              | 80      | 80      | 100     | 100     | 100     |
| Outlet                    | [DN]              | 150     | 200     | 200     | 250     | 250     |
| Feedwater pump retu       | <b>rn</b> [DN]    | 50      | 80      | 80      | 80      | 80      |
| Exterior surface          | [m <sup>2</sup> ] | 75.2    | 90.9    | 93.2    | 112.1   | 130.9   |





| Operating and<br>design data | Operating pressure<br>operating temperature<br>permissible operating pressure<br>permissible operating temperature                                                                                                                | 0.2 bar (overpressure)<br>105 °C<br>0.5 bar (overpressure)<br>110 °C                                                                                                                                                    |  |  |  |  |  |
|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Corrosion<br>protection      | Inside: None<br>Outside: First coat with rust prime                                                                                                                                                                               | r                                                                                                                                                                                                                       |  |  |  |  |  |
| Materials                    | Standard S 235 JR+N plated<br>(optionally P 265 GH, 321, 316Ti)                                                                                                                                                                   | Standard S 235 JR+N plated<br>(optionally P 265 GH, 321, 316Ti)                                                                                                                                                         |  |  |  |  |  |
| Accessories<br>(optional)    | Thermometer, safety valve, vacuum b<br>level measurement, supply control, d<br>structures, various shutoff valves                                                                                                                 | Thermometer, safety valve, vacuum breaker, overflow regulation, steam pressure regulator, level measurement, supply control, dosing system, sample cooler, control technology, steel structures, various shutoff valves |  |  |  |  |  |
| Approvals                    | Leak test with factory certification, manufactured pursuant to AD specifications and<br>pressure equipment directive,<br>optionally:<br>- Designed pursuant to DIN EN 13445<br>- Acceptance certificate<br>- Non-destructive test |                                                                                                                                                                                                                         |  |  |  |  |  |

Special versions or non-standard versions possible on request.